
\
PERGAMON International Journal of Heat and Mass Transfer 30 "0887# 3914Ð3918

9906Ð8209:87 ,08[99 Þ 0887 Elsevier Science Ltd[ All rights reserved
PII ] S 9 9 0 6 Ð 8 2 0 9 " 8 7 # 9 9 0 9 2 Ð 2

Technical Note
Integral solutions of di}usion!controlled dendrite tip growth
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Nomenclature

C speci_c heat
E0"x# exponential integral function de_ned in eqn "1#
`"x# function as de_ned in eqn "15#
k thermal conductivity
L latent heat
Pe Peclet number
R local radius of revolution of a paraboloid
r radius coordinate
St Stefan number
T� ambient temperature
Tm melting temperature
ux\ uy velocity components
V tip velocity
x\ y coordinates[

Greek symbols
a thermal di}usivity
dT thermal boundary thickness
r dendrite tip radius
u dimensionless temperature
8 angle as de_ned in Fig[ 0[

0[ Introduction

Dendrites are one of the most important growth forms
in solidi_cation\ and widely exist in nature and in engin!
eering applications ð0Ł[ The dendrite tip can be sat!
isfactorily modeled as a paraboloid of revolution\ as orig!
inally proposed by Papapetrou in 0824 "see ð0Ł#[ The _rst
analytical solution for dendritic growth was obtained by
Ivantsov ð1Ł\ by solving the thermal di}usion problem for
an isothermal paraboloid growing steadily in a uniformly
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supercooled melt[ The resulting {Ivantsov function|\
Iv"Pe#\ relates the dimensionless supercooling\ St\ to the
tip growth Peclet number\ Pe "see below for a de_nition
of the dimensionless parameters# as

St � Iv"Pe# � Pe exp"Pe#E0"Pe# "0#

where E0"Pe# is the exponential integral\

E0"Pe# � g
�

Pe

exp"−x#
x

dx "1#

The Ivantsov solution _nds extensive applications in crys!
tal growth and other solidi_cation processes[ Horvey and
Cahn ð2Ł later generalized Ivantsov|s analysis to par!
aboloidal dendrites of arbitrary ellipticity by introducing
an eccentricity parameter[ The exact solution in eqn "0#
can be expressed as an in_nite series ð3Ł[ For convenience
in numerical calculations\ several polynomial curve _ts
have been proposed to approximate the Ivantsov func!
tion ð3Ł[

The objective of this Technical Note is to develop an
alternative approach for solving the classical dendrite tip
growth problem[ The present approach is based on the
approximate integral method[ The integral method has
been successfully applied in the past to solve boundary!
layer ~ow and transient heat transfer problems\ the Ste!
fan problem ð4Ł\ and other problems that admit no exact
solution or where exact solutions are too cumbersome
to use in engineering applications ð4Ð6Ł[ In the integral
method\ the conservation principle embodied in the par!
tial di}erential equation is not honored locally\ but only
globally[ In the following\ it is demonstrated that the
integral method can provide very accurate approxi!
mations to the Ivantsov solution if appropriate tem!
perature pro_les in the thermal boundary layer around
the dendrite tip are chosen[ First\ the integral form of the
energy equation is derived[ Then\ integral solutions for
three assumed temperature pro_les are presented and
compared with the exact solution[ Finally\ several con!
clusions are reached based on the present analysis[
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1[ Analysis and results

Figure 0 depicts the dendrite tip geometry and the
coordinate system used in the present analysis[ We adopt
the same assumptions as in the original work of Ivantsov
ð1Ł\ including purely di}usive transport of heat[ The den!
drite tip is modeled as a paraboloid of revolution with a
tip radius r\ and assumed to be isothermal at the melting
temperature\ Tm[ The melt far from the dendrite tip is
supercooled at a temperature T�[ The dimensionless
supercooling is de_ned as\ St �"Tm−T�#:"L:C#\ where
L and C are the latent heat and speci_c heat of the liquid\
respectively[ The tip grows steadily at a velocity V along
the negative z!axis\ as shown in Fig[ 0[ The tip growth
Peclet number is de_ned as\ Pe � Vr:"1a#\ where a is the
thermal di}usivity of the liquid[ A thermal boundary
layer develops around the growing dendrite tip[ The
boundary layer thickness is denoted by dT[ The origin of
the xÐy coordinate system is _xed to the moving tip "see
Fig[ 0#\ and x and y are the coordinates tangential and
normal\ respectively\ to the solid:liquid interface[ The
energy conservation equation for the liquid in this mov!
ing coordinate system can be expressed as follows ]

ux

1u

1x
¦uy

1u

1y
�

a

r
1

1y0r
1u

1y1[ "2#

It is subjected to the boundary conditions\

u � 0 at y � 9 "3a#

u � 9 at y − dT[ "3b#

In eqn "2#\ the temperature T is nondimensionalized as

u �
T−T�

Tm−T�

"4#

and r � R¦y cos 8\ where R is the local radius of rev!
olution and 8 is the angle between the x!axis and the
z!axis "see Fig[ 0#[ The angle is dependent on x\ but
independent of y\ according to

Fig[ 0[ Schematic of the dendrite tip geometry and thermal
boundary layer[

8 � tan−00
dR
dz1� tan−00

r

R1[ "5#

For di}usion!controlled dendrite tip growth\ the vel!
ocity components ux and uy are given by

ux � V cos 8 �
R:r

z0¦R1:r1
V "6a#

uy � −V sin 8 � −
0

z0¦R1:r1
V[ "6b#

It is obvious that thermal di}usion along the x!direction
is neglected in eqn "2#\ as is commonly done in boundary
layer analyses ð6Ł[ Integrating eqn "2# from y � 9 to
y � dT\ we obtain the following integral form of the
energy equation\

0
R

d
dx$g

dT

9

uxu"R¦y cos 8# dy%� −a
1u

1yby�9

¦uy =y�9[

"7#

It is instructive to point out that even if we adopt the
concept of a boundary layer\ the boundary layer thick!
ness does not have to be thin compared to the local radius
of revolution R ^ in fact\ R goes to zero at the dendrite
tip[ The physical meaning of the various terms in eqn "7#
is that the right!hand side represents the sum of thermal
di}usion and advective transport from the base of the
integral volume\ and the left!hand side represents the
advective energy transport out of the volume in the x!
direction[ Since we are only concerned with the dendrite
tip where R : 9\ and 8 : p:1\ the following limits are
useful in the analysis\

lim
R:9

cos 8

R
�

0
r

"8a#

lim
R:9

dR
dx

� 0 "8b#

lim
R:9

d cos8

dx
�

0
r

[ "8c#

In order to solve eqn "7# for the boundary layer thick!
ness dT\ an analytical expression for the temperature pro!
_le in the thermal boundary layer needs to be postulated[
We present results for three di}erent trial functions for
the temperature pro_le in the present note[ Generally\
the selection of the trial function requires physical insight
and careful consideration of the problem nature[ The
three trial functions are logarithmic\ reciprocal and
exponential[ They all satisfy the boundary conditions
imposed by eqns "3a# and "3b# except for the exponential
function\ which approaches T� only at in_nity[ The three
trial functions will result in di}erent temperature gradi!
ents\ hence heat transfer rates at the dendrite tip[ As is
typical for integral analyses\ it is not possible to judge a
priori which trial function will lead to the most accurate



Technical Note 3916

heat transfer rates and best agreement with the exact
Ivantsov solution[

1[0[ Lo`arithmic function

The logarithmic temperature pro_le is given by

u � 0−
ln"0¦y:r#
ln"0¦dT:r#

[ "09#

Substituting eqns "6a#\ "6b#\ and "09# into eqn "7#\ and
integrating the left!hand side\ we obtain

0
R

d
dx$RrV cos 80

dT:r
ln"0¦dT:r#

−01
¦

r1V cos1 8

1 00¦
dT:r"dT:r−1#
1 ln"0¦dT:r# 1%

�
a

r

0
ln"0¦dT:r#

−V sin 8[ "00#

Due to symmetry\ the _rst derivative of dT with respect
to x is zero at the tip\ i[e[

ddT

dx
� 9[ "01#

Then\ taking the limit of eqn "00# at the dendrite tip\
R : 9\ we obtain the expression for the boundary layer
thickness dT at x � 9

dT

r
�X0¦

0
Pe

−0[ "02#

The Stefan condition at the solidÐliquid interface can be
written as

L"Vł = n�# � −k"9T = n�# "03#

where k is the thermal conductivity of the liquid[ Using
eqn "02# to evaluate the heat ~ux at the interface\ eqn
"03# results in a relationship between the tip growth Peclet
number\ Pe\ and the tip supercooling\ St\ as

St � Pe ln00¦
0
Pe1[ "04#

Equation "04# is a good approximation to the exact
Ivantsov solution for the full range of supercoolings\
09−3 ¾ St ¾ 0\ as shown in Fig[ 1[

1[1[ Reciprocal function

The reciprocal temperature pro_le can be written as

u �
0−y:dT

0¦y:r
[ "05#

Substituting eqn "05# into eqn "7# and carrying out the
integration\ the following expression for the boundary
layer thickness at the dendrite tip\ dT\ can be obtained\

dT

r
�

0
1Pe

[ "06#

Hence\ the approximate solution for this trial function is

St �
1Pe

1Pe¦0
"07#

or\ inversely\

Pe � 9[40
St

0−St1 "08#

which is exactly the so!called second approximation\ I1\
to the Ivantsov function "see ð0Ł#[ Although eqn "07# is
in relatively poor agreement with the exact solution for
Pe ³ 9[0\ as shown in Fig[ 1\ it is useful for curve!_tting
the inverse Ivantsov function\ as was done in Ref[ ð7Ł[
This can be accomplished by slightly changing the
coe.cient and the exponential on the parentheses in eqn
"08#[

1[2[ Exponential function

The exponential temperature pro_le is given by

u � exp0−
y
dT1[ "19#

This trial function is based on the one!dimensional
steady!state temperature pro_le ahead of a moving
planar front[ Substitution into the Stefan condition\ eqn
"03#\ yields

dT � St
a

Vn

"10#

where Vn is the normal interface velocity given by
Vn � V sin 8[ Upon substitution of eqns "19# and "10#
into eqn "7#\ the integration is carried out to in_nity
because u does not approach zero at y � dT "i[e[ the
boundary layer thickness given by eqn "10# is only a
characteristic value at which u has decreased to e−0#[ The
result is ]

0
R

d
dx$RaSt

cos 8

sin 8
¦

a1St1

V
cos1 8

sin1 8%�
V sin 8

St
−V sin 8[

"11#

At the dendrite tip\ R : 9\ the above equation becomes

0
0
St

−01Pe1−StPe−
0
1

St1 � 9[ "12#

The valid solution to eqn "12# is

Pe �
St"0¦z1:St−0#

1"0:St−0#
"13#

or\ inversely\

St � −
1
2

Pe−
1
2

Pe1

`"Pe#
¦

`"Pe#
2

"14#

where\
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Fig[ 1[ Comparison of the present integral solutions with the exact Ivantsov solution[

`"Pe# �"16Pe1¦09Pe2

¦2z2Pe1z16¦19Pe¦3Pe1#0:2[ "15#

When the Peclet number is larger than about 9[92\ the
above approximate solution matches the exact solution
extremely well\ as shown in Fig[ 1[ At smaller growth
Peclet number\ eqn "13# deviates considerably from the
exact solution[ The inverse form\ eqn "13#\ is very useful
in engineering calculations of solidi_cation ð7Ł[

2[ Conclusions

An integral analysis of the classical di}usion!con!
trolled dendrite tip growth problem is carried out[ Three
temperature pro_les are tried\ resulting in three approxi!
mate solutions\ eqns "04#\ "07# and "13#[ The approximate
solution given by eqn "04# agrees best with the exact
Ivantsov solution for the entire Pe number range[ An
even more accurate solution can be constructed by

switching to eqn "13# for Pe − 9[91[ The solution given by
eqn "07# is in relatively poor agreement with the Ivantsov
solution\ but can be improved through curve _tting ð7Ł[
Equations "08# and "13# feature compact inverse forms\
which are useful in engineering calculations[

The relative success of the present study provides some
impetus to extend the integral method to the problem of
dendrite tip growth with convection in the liquid ð8Ł[
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